Computer Physics Communications Program LibraryPrograms in Physics & Physical Chemistry |

[Licence| Download | New Version Template] aevq_v1_0.tar.gz(8609 Kbytes) | ||
---|---|---|

Manuscript Title: Phasego: A toolkit for automatic calculation and plot of phase diagram | ||

Authors: Zhong-Li Liu | ||

Program title: Phasego | ||

Catalogue identifier: AEVQ_v1_0Distribution format: tar.gz | ||

Journal reference: Comput. Phys. Commun. 191(2015)150 | ||

Programming language: Python (versions 2.4 and later). | ||

Computer: Any computer that can run Python (versions 2.4 and later). | ||

Operating system: Any operating system that can run Python. | ||

RAM: 10 M bytes | ||

Keywords: Quasi-harmonic approximation, Gibbs free energy, Phase diagram, Thermodynamic properties. | ||

Classification: 7.8. | ||

External routines: Numpy [1], Scipy [2], Matplotlib [3] | ||

Nature of problem:Materials usually undergo structural phase transitions when the environmental pressure and temperature are elevated to high enough values. The phase transition process obeys the principle of lowest Gibbs free energy. In addition to the static energy, current density functional theory (DFT) calculations can easily give the phonon density of states of lattice vibrations, from which the Helmholtz free energy of phonons are reduced. Then Gibbs free energy can be achieved for the analysis of phase stability and phase transition at high pressure and temperature within the framework of QHA. The problem is to extract the Gibbs free energies from the DFT calculations and automatically analyze the high pressure and temperature phase boundaries among a number of structures. | ||

Solution method:With the help of numerical interpolation techniques, the Gibbs free energy as a function of pressure/temperature at fixed temperature/pressure can be obtained. Then the QHA based phase boundaries can be automatically determined and plotted by scanning the pressure/temperature at fixed temperature/pressure according to the principle of lowest Gibbs free energy. | ||

Restrictions:The restriction is from the QHA which takes partially into account the anharmonic effects. | ||

Unusual features:The phase boundaries among a number of structures can be automatically determined and plotted, which largely improves the efficiency of phase transition analysis. In addition to some basic thermodynamic properties of each single structure, the Hugoniot pressure-volume-temperature relations are also automatically reduced. | ||

Additional comments:This package can treat the phonon density of states data from many packages, such as PHON [4], PHONOPY [5], Quantum ESPRESSO [6], and ABINIT [7]. | ||

Running time:The examples provided in the distribution take less than a minute to run. | ||

References: | ||

[1] | www.numpy.org | |

[2] | www.scipy.org | |

[3] | www.matplotlib.org | |

[4] | D. Alfè, Comput. Phys. Commun. 180 (2009) 2622, www.homepages.ucl.ac. uk/~ucfbdxa/ | |

[5] | www.phonopy.sourceforge.net | |

[6] | P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S.D. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21 (2009) 395502, www.quantum-espresso.org | |

[7] | X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Ct, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M. Verstraete, G. Zerah, J. Zwanziger, Comput. Phys. Commun. 180 (2009) 2582, www.abinit.org |

Disclaimer | ScienceDirect | CPC Journal | CPC | QUB |