Elsevier Science Home
Computer Physics Communications Program Library
Full text online from Science Direct
Programs in Physics & Physical Chemistry
CPC Home

[Licence| Download | New Version Template] aepv_v1_0.tar.gz(35111 Kbytes)
Manuscript Title: ERMES: A nodal-based finite element code for electromagnetic simulations in frequency domain
Authors: Ruben Otin
Program title: ERMES
Catalogue identifier: AEPV_v1_0
Distribution format: tar.gz
Journal reference: Comput. Phys. Commun. 184(2013)2588
Programming language: C++.
Computer: Any computer with Microsoft Windows (32-bits or 64-bits) installed.
Operating system: Microsoft Windows 32-bits or 64-bits.
RAM: Problem dependent. See [1] for examples of computational performance
Keywords: Electromagnetism, Computational electromagnetics, Time-harmonic fields, Finite element method, Nodal elements, Weighted regularized Maxwell equations, Finite element software.
PACS: 02.70.Dh.
Classification: 10.

External routines: GiD [5] is used for geometrical modeling, data input, meshing and visualization of results

Nature of problem:
Time-harmonic Maxwell equations

Solution method:
Finite element formulation based on the weighted regularized Maxwell equation method [2, 1, 3, 4].

Running time:
Problem dependent (see [1])

References:
[1] R. Otin, L. E. Garcia-Castillo, I. Martinez-Fernandez, D. Garcia- Donoro, Computational performance of a weighted regularized Maxwell equation finite element formulation, Progress In Electromagnetics Research 136 (2013) 61-77.
[2] R. Otin, Regularized Maxwell equations and nodal finite elements for electro-magnetic field computations, Electromagnetics 30 (2010) 190-204.
[3] M. Costabel, M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numerische Mathematik 93 (2) (2002) 239-277.
[4] C. Hazard, M. Lenoir, On the solution of the time-harmonic scattering problems for Maxwell's equations, SIAM Journal on Mathematical Analysis 27 (1996) 1597-1630.
[5] GiD, The personal pre and post processor, International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain. [Online]. Available: http://www.gidhome.com.