Elsevier Science Home
Computer Physics Communications Program Library
Full text online from Science Direct
Programs in Physics & Physical Chemistry
CPC Home

[Licence| Download | New Version Template] adrv_v2_0.tar.gz(1304 Kbytes)
Manuscript Title: SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM
Authors: W. Porod, F. Staub
Program title: SPheno
Catalogue identifier: ADRV_v2_0
Distribution format: tar.gz
Journal reference: Comput. Phys. Commun. 183(2012)2458
Programming language: Fortran95.
Computer: PC running under Linux, should run in every Unix environment.
Operating system: Linux, Unix.
Keywords: Supersymmetry, renormalization group equations, mass spectra of supersymmetric models, Runge-Kutta, decays of supersymmetric particles, production.
PACS: 11.10.Hi, 12.60.Jv, 14.80.Ly.
Classification: 11.6.

Does the new version supersede the previous version?: Yes

Nature of problem:
The first issue is the determination of the masses and couplings of supersymmetric particles in various supersymmetric models the R-parity conserved MSSM with generation mixing and including CP-violating phases, various seesaw extensions of the MSSM and the MSSM with bilinear R-parity breaking. Low energy data on Standard Model fermion masses, gauge couplings and electroweak gauge boson masses serve as constraints. Radiative corrections from supersymmetric particles to these inputs must be calculated. Theoretical constraints on the soft SUSY breaking parameters from a high scale theory are imposed and the parameters at the electroweak scale are obtained from the high scale parameters by evaluating the corresponding renormalization group equations. These parameters must be consistent with the requirement of correct electroweak symmetry breaking. The second issue is to use the obtained masses and couplings for calculating decay widths and branching ratios of supersymmetric particles as well as the cross sections for theses particles in electron positron annihilation. The third issue is to calculate low energy constraints in the B-meson sector such as BR(b → sγ), ΔMBs, rare lepton decays, such as BR(μ → eγ), the SUSY contributions to anomalous magnetic moments and electric dipole moments of leptons, the SUSY contributions to the rho parameter as well as lepton flavour violating Z decays.

Solution method:
The renormalization connecting a high scale and the electroweak scale is calculated by the Runge-Kutta method. Iteration provides a solution consistent with the multi-boundary conditions. In case of three-body decays and for the calculation of initial state radiation Gaussian quadrature is used for the numerical solution of the integrals.

Reasons for new version:
Inclusion of new models as well as additional observables. Moreover, a new standard for data transfer had been established, which is now supported.

Summary of revisions:
The already existing models have been extended to include also CP-violation and flavour mixing. The data transfer is done using the so-called SLHA2 standard. In addition new models have been included:
all three types of seesaw models as well as bilinear R-parity violation. Moreover, additional observables are calculated: branching ratios for flavour violating lepton decays, EDMs of leptons and of the neutron, CP-violating mass difference in the B-meson sector and branching ratios for flavour violating b-quark decays.

Restrictions:
In case of R-parity violation the cross sections are not calculated.

Running time:
0.2 seconds on a Intel(R) Core(TM)2 Duo CPU T9900 with 3.06GHz